Consensus Scoring Criteria for Improving Enrichment in Virtual Screening
نویسندگان
چکیده
MOTIVATION Virtual screening of molecular compound libraries is a potentially powerful and inexpensive method for the discovery of novel lead compounds for drug development. The major weakness of virtual screening-the inability to consistently identify true positives (leads)-is likely due to our incomplete understanding of the chemistry involved in ligand binding and the subsequently imprecise scoring algorithms. It has been demonstrated that combining multiple scoring functions (consensus scoring) improves the enrichment of true positives. Previous efforts at consensus scoring have largely focused on empirical results, but they have yet to provide a theoretical analysis that gives insight into real features of combinations and data fusion for virtual screening. RESULTS We demonstrate that combining multiple scoring functions improves the enrichment of true positives only if (a) each of the individual scoring functions has relatively high performance and (b) the individual scoring functions are distinctive. Notably, these two prediction variables are previously established criteria for the performance of data fusion approaches using either rank or score combinations. This work, thus, establishes a potential theoretical basis for the probable success of data fusion approaches to improve yields in in silico screening experiments. Furthermore, it is similarly established that the second criterion (b) can, in at least some cases, be functionally defined as the area between the rank versus score plots generated by the two (or more) algorithms. Because rank-score plots are independent of the performance of the individual scoring function, this establishes a second theoretically defined approach to determining the likely success of combining data from different predictive algorithms. This approach is, thus, useful in practical settings in the virtual screening process when the performance of at least two individual scoring functions (such as in criterion a) can be estimated as having a high likelihood of having high performance, even if no training sets are available. We provide initial validation of this theoretical approach using data from five scoring systems with two evolutionary docking algorithms on four targets, thymidine kinase, human dihydrofolate reductase, and estrogen receptors of antagonists and agonists. Our procedure is computationally efficient, able to adapt to different situations, and scalable to a large number of compounds as well as to a greater number of combinations. Results of the experiment show a fairly significant improvement (vs single algorithms) in several measures of scoring quality, specifically "goodness-of-hit" scores, false positive rates, and "enrichment". This approach (available online at http://gemdock.life. nctu.edu.tw/dock/download.php) has practical utility for cases where the basic tools are known or believed to be generally applicable, but where specific training sets are absent.
منابع مشابه
Full combinatorial consensus scoring for ligand-based virtual fragment screening at membrane bound receptors
Virtual screening (VS) has become an integral part of fragment-based drug discovery (FBDD). In this study we have evaluated the applicability of ligand-based virtual screening (LBVS) methods for identifying small fragment-like biologically active molecules using different similarity descriptors and different consensus scoring approaches. For this purpose we have evaluated the performance of 14 ...
متن کاملImproving Docking Performance Using Negative Image-Based Rescoring
Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse th...
متن کاملBook Review | New Books
Background: The need for fast and accurate scoring functions has been driven by the increased use of in silico virtual screening twinned with high-throughput screening as a method to rapidly identify potential candidates in the early stages of drug development. We examine the ability of some the most common scoring functions (GOLD, ChemScore, DOCK, PMF, BLEEP and Consensus) to discriminate corr...
متن کاملPrediction of Ligand Binding Using an Approach Designed to Accommodate Diversity in Protein-Ligand Interactions
Computational determination of protein-ligand interaction potential is important for many biological applications including virtual screening for therapeutic drugs. The novel internal consensus scoring strategy is an empirical approach with an extended set of 9 binding terms combined with a neural network capable of analysis of diverse complexes. Like conventional consensus methods, internal co...
متن کاملEvaluation of 11 Scoring Functions Performance on Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) have distinctive roles in various physiological and pathological processes such as inflammatory diseases and cancer. This study explored the performance of eleven scoring functions (D-Score, G-Score, ChemScore, F-Score, PMF-Score, PoseScore, RankScore, DSX, and X-Score and scoring functions of AutoDock4.1 and AutoDockVina). Their performance was judged by calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and modeling
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2005